一.整合Druid数据源
Druid是一个关系型数据库连接池,是阿里巴巴的一个开源项目,Druid在监控,可扩展性,稳定性和性能方面具有比较明显的优势.通过Druid提供的监控功能,可以实时观察数据库连接池和SQL查询的工作情况.使用Druid在一定程度上可以提高数据库的访问技能.
1.1 在pom.xml中添加依赖
com.alibaba druid 1.0.18
1.2 Druid数据源配置
在application.properties中,去书写Druid数据源的配置信息.
##Druid##spring.datasource.type=com.alibaba.druid.pool.DruidDataSourcespring.datasource.driver-class-name=com.mysql.jdbc.Driverspring.datasource.url=jdbc:mysql://localhost:3306/test?characterEncoding=UTF-8spring.datasource.username=rootspring.datasource.password=rootspring.datasource.initialSize=5spring.datasource.minIdle=5spring.datasource.maxActive=20spring.datasource.maxWait=60000spring.datasource.timeBetweenEvictionRunsMillis=60000spring.datasource.minEvictableIdleTimeMillis=300000spring.datasource.validationQuery=SELECT 1 FROM DUALspring.datasource.testWhileIdle=truespring.datasource.testOnBorrow=falsespring.datasource.testOnReturn=falsespring.datasource.poolPreparedStatements=truespring.datasource.maxPoolPreparedStatementPerConnectionSize=20spring.datasource.filters=stat,wall,log4jspring.datasource.connectionProperties=druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000spring.datasource.useGlobalDataSourceStat=true
1.3 建立DruidConfiguration配置类,配置过滤信息
@Configurationpublic class DruidConfiguration { @Bean public ServletRegistrationBean statViewServle(){ ServletRegistrationBean servletRegistrationBean = new ServletRegistrationBean(new StatViewServlet(),"/druid/*"); //白名单: servletRegistrationBean.addInitParameter("allow","192.168.1.218,127.0.0.1"); //IP黑名单 (存在共同时,deny优先于allow) : 如果满足deny的即提示:Sorry, you are not permitted to view this page. servletRegistrationBean.addInitParameter("deny","192.168.1.100"); //登录查看信息的账号密码. servletRegistrationBean.addInitParameter("loginUsername","druid"); servletRegistrationBean.addInitParameter("loginPassword","12345678"); //是否能够重置数据. servletRegistrationBean.addInitParameter("resetEnable","false"); return servletRegistrationBean; } @Bean public FilterRegistrationBean statFilter(){ FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean(new WebStatFilter()); //添加过滤规则. filterRegistrationBean.addUrlPatterns("/*"); //添加不需要忽略的格式信息. filterRegistrationBean.addInitParameter("exclusions","*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*"); return filterRegistrationBean; }}
1.4 配置数据源的信息
告诉springboot采用Druid数据源:
@Bean(name = "dataSource") @Primary @ConfigurationProperties(prefix = "spring.datasource") public DataSource dataSource(){ return DataSourceBuilder.create().type(com.alibaba.druid.pool.DruidDataSource.class).build(); }
接下来就可以通过localhost:8080/druid/index.html去打开控制台,观察过滤信息了!
二.使用@Cache简化redis配置
在实体类比较简单的时候(例如:没有一对多,多对多这类复杂的关系,不是List,Map这类数据类型,只是一个Pojo类),可以使用@Cache去替代书写BeanRedis注入RedisTemplate的方式去访问Redis数据库.
2.1 建立RoleService.采用@Cacheable和@CachePut去访问Redis
实体类的主要属性如下:
2.1 建立Redis配置类,需要去配置Redis的注解
@ConfigurationProperties("application.properties")@Configuration@EnableCachingpublic class RedisConfig extends CachingConfigurerSupport { @Value("${spring.redis.hostName}") private String hostName; @Value("${spring.redis.port}") private Integer port; @Bean public RedisConnectionFactory redisConnectionFactory() { JedisConnectionFactory cf = new JedisConnectionFactory(); cf.setHostName(hostName); cf.setPort(port); cf.afterPropertiesSet(); return cf; } //配置key的生成 @Bean public KeyGenerator simpleKey(){ return new KeyGenerator() { @Override public Object generate(Object target, Method method, Object... params) { StringBuilder sb = new StringBuilder(); sb.append(target.getClass().getName()+":"); for (Object obj : params) { sb.append(obj.toString()); } return sb.toString(); } }; } //配置key的生成 @Bean public KeyGenerator objectId(){ return new KeyGenerator() { @Override public Object generate(Object target, Method method, Object... params){ StringBuilder sb = new StringBuilder(); sb.append(target.getClass().getName()+":"); try { sb.append(params[0].getClass().getMethod("getId", null).invoke(params[0], null).toString()); }catch (NoSuchMethodException no){ no.printStackTrace(); }catch(IllegalAccessException il){ il.printStackTrace(); }catch(InvocationTargetException iv){ iv.printStackTrace(); } return sb.toString(); } }; } //配置注解 @Bean public CacheManager cacheManager(@SuppressWarnings("rawtypes") RedisTemplate redisTemplate) { RedisCacheManager manager = new RedisCacheManager(redisTemplate); manager.setDefaultExpiration(43200);//12小时 return manager; } //对于复杂的属性仍然使用RedisTemplate @Bean public RedisTemplateredisTemplate( RedisConnectionFactory factory) { StringRedisTemplate template = new StringRedisTemplate(factory); Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL); jackson2JsonRedisSerializer.setObjectMapper(om); template.setValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template; }} 2.2
- 编写redis的service类操作edis数据库
package cn.springboot.mybatis.service;
import java.io.Serializable;
import java.util.List;import java.util.Set;import java.util.concurrent.TimeUnit;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.HashOperations;import org.springframework.data.redis.core.ListOperations;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.data.redis.core.SetOperations;import org.springframework.data.redis.core.ValueOperations;import org.springframework.data.redis.core.ZSetOperations;import org.springframework.stereotype.Service;@Service
public class RedisService { @Autowiredprivate RedisTemplate redisTemplate;/*** 写入缓存* @param key* @param value* @return*/public boolean set(final String key, Object value) { boolean result = false;try { ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();operations.set(key, value);result = true;} catch (Exception e) { e.printStackTrace();}return result;}/*** 写入缓存设置时效时间* @param key* @param value* @return*/public boolean set(final String key, Object value, Long expireTime) { boolean result = false;try { ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();operations.set(key, value);redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);result = true;} catch (Exception e) { e.printStackTrace();}return result;}/*** 批量删除对应的value* @param keys*/public void remove(final String... keys) { for (String key : keys) { remove(key);}}/**
* 批量删除key* @param pattern*/public void removePattern(final String pattern) { Set<Serializable> keys = redisTemplate.keys(pattern);if (keys.size() > 0)redisTemplate.delete(keys);}/*** 删除对应的value* @param key*/public void remove(final String key) { if (exists(key)) { redisTemplate.delete(key);}}/*** 判断缓存中是否有对应的value* @param key* @return*/public boolean exists(final String key) { return redisTemplate.hasKey(key);}/*** 读取缓存* @param key* @return*/public Object get(final String key) { Object result = null;ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();result = operations.get(key);return result;}/*** 哈希 添加* @param key* @param hashKey* @param value*/public void hmSet(String key, Object hashKey, Object value){ HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();hash.put(key,hashKey,value);}/**
* 哈希获取数据* @param key* @param hashKey* @return*/public Object hmGet(String key, Object hashKey){ HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();return hash.get(key,hashKey);}/**
* 列表添加* @param k* @param v*/public void lPush(String k,Object v){ ListOperations<String, Object> list = redisTemplate.opsForList();list.rightPush(k,v);}/**
* 列表获取* @param k* @param l* @param l1* @return*/public List<Object> lRange(String k, long l, long l1){ ListOperations<String, Object> list = redisTemplate.opsForList();return list.range(k,l,l1);}/**
* 集合添加* @param key* @param value*/public void add(String key,Object value){ SetOperations<String, Object> set = redisTemplate.opsForSet();set.add(key,value);}/**
* 集合获取* @param key* @return*/public Set<Object> setMembers(String key){ SetOperations<String, Object> set = redisTemplate.opsForSet();return set.members(key);}/**
* 有序集合添加* @param key* @param value* @param scoure*/public void zAdd(String key,Object value,double scoure){ ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();zset.add(key,value,scoure);}/**
* 有序集合获取* @param key* @param scoure* @param scoure1* @return*/public Set<Object> rangeByScore(String key,double scoure,double scoure1){ ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();return zset.rangeByScore(key, scoure, scoure1);}}
2.3 controller测试
@RestController
public class MessageController { @Autowiredprivate RedisService redisService;/* @RequestMapping(value = "/message",method = RequestMethod.GET)@ResponseBodypublic List<String> greeting(String user) { List<String> messages = cacheService.listMessages(user);return messages;}*/@RequestMapping(value = "/message1",method = RequestMethod.GET)@ResponseBodypublic String saveGreeting(String user,String message) { String usestrr="hello";String message1="world";redisService.set("002", message1);return "OK";}}
补充:
使用@Cache简化redis配置
在实体类比较简单的时候(例如:没有一对多,多对多这类复杂的关系,不是List,Map这类数据类型,只是一个Pojo类),可以使用@Cache去替代书写BeanRedis注入RedisTemplate的方式去访问Redis数据库.
2.1 建立RoleService.采用@Cacheable和@CachePut去访问Redis
实体类的主要属性如下:
本例子没用使用该方法赶兴趣的可以试一下下面是源码
@Servicepublic class RoleService { @Autowired private RoleRepository roleRepository; @Autowired private RoleRedis roleRedis; @Cacheable(value = "mysql:findById:role", keyGenerator = "simpleKey") public Role findById(Long id) { System.out.println("从数据库中查询"); return roleRepository.findOne(id); } @CachePut(value = "mysql:findById:role", keyGenerator = "objectId") public Role create(Role role) { System.out.println("************在数据库中创建************"); return roleRepository.save(role); } //简单的操作使用注解的形式 @CachePut(value = "mysql:findById:role", keyGenerator = "objectId") public Role update(Role role) { System.out.println("************在数据库中更新************"); return roleRepository.save(role); } @CacheEvict(value = "mysql:findById:role", keyGenerator = "simpleKey") public void delete(Long id) { System.out.println("************在数据库中销毁************"); roleRepository.delete(id); } public ListfindAll(){ List roleList = roleRedis.getList("mysql:findAll:role"); if(roleList == null) { roleList = roleRepository.findAll(); if(roleList != null) roleRedis.add("mysql:findAll:role", 5L, roleList); } return roleList; } //复杂的依然使用RedisTemplate的形式 public Page findPage(RoleQo roleQo){ Pageable pageable = new PageRequest(roleQo.getPage(), roleQo.getSize(), new Sort(Sort.Direction.ASC, "id")); PredicateBuilder pb = new PredicateBuilder(); if (!StringUtils.isEmpty(roleQo.getName())) { pb.add("name","%" + roleQo.getName() + "%", LinkEnum.LIKE); } Page pages = roleRepository.findAll(pb.build(), Operator.AND, pageable); return pages; }}
本文章参考一下两篇博客
1
http://www.cnblogs.com/hlhdidi/p/6350306.html
2
http://www.cnblogs.com/haitao-xie/p/6323423.html